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MULTI-LEVEL BANDWIDTH EFFICIENT
BLOCK MODULATION CODES

ABSTRACT

In this paper, we investigate the multi-level technique for combining block
coding and modulation. The paper consists of four parts. In the first part,
we present a formulation for signal sets on which modulation codes are to be
constructed. Distance measures on a signal set are defined and their properties
are developed. In the second part, we present a general formulation for multi-
level modulation codes in terms of component codes with appropiate Euclidean
distances. The distance properties, Euclidean weight distribution and linear
structure of multi-level modulation codes are investigated. In the third part,
several specific methods for constructing multi-level block modulation codes with
interdependency among component codes are proposed. Given a multi-level
block modulation code C with no interdependency among the binary component
codes, the proposed methods give a multi-level block modulation code C’ which
has the same rate as C, a minimum squared Euclidean distance not less than
that of code C, a trellis diagram with the same number of states as that of C and
a smaller number of nearest neighbor codewords than that of C. In the last part,
error performance of block modulation codes is analyzed for an AWGN channel
based on soft-decision maximum likelihood decoding. Error probabilities of some
specific codes are evaluated based on their Euclidean weight distributions and

simulation results.



1. Introduction

One of the dramatic developments in bandwidth-efficient communications over the past few
years is the introduction and rapid application of combined coding and bandwidth-efficient
modulation, known as coded modulation, for reliable data transmission [1]. The basic con-
cept of coded modulation is to encode information symbols onto an expanded channel signal
set (relative to that needed for uncoded modulation). The channel signal set expansion pro-
vides the needed redundancy for error control without increasing bandwidth requirements,
while coding is used to produce a certain interdependency between successive channel signals,
such that only certain sequences of channel signals are permitted. Using properly designed
coded modulation, significant coding gains over uncoded modulation schemes can be achieved
without compromising bandwidth efficiency [1].

Based on code structure, there are two basic types of coded modulations: the trellis
coded modulation (TCM) and the block coded modulation (BCM). TCM was first introduced
by Ungerboeck in 1982 [1]. Since the publication of Ungerboeck’s paper, there has been a
great deal of research on the construction of TCM codes [2-16]. In this paper, we focus on
BCM. Particularly, we investigate the powerful multi-level technique [17-26] for combining
block coding and modulation. This multi-level technique allows us to construct bandwidth-
efficient block modulation codes with arbitrary large minimum squared Euclidean distances
from Hamming distance component codes (binary or nonbinary) in conjunction with proper
signal mapping.

The presentation of this paper is organized as follows. In Section 2, we present a formu-
lation for signal sets on which modulation codes are to be constructed. Each signal point is
labeled by a string of symbols from a certain finite alphabet, say {0,1}. Distance measures
on a signal set are defined and their properties are developed. In Section 3, we provide a
general formulation for multi-level modula.tiOI; codes in terms of component codes over sub-
strings of labeling symbols. Lower bounds on the minimum (squared Euclidean) distance of
multi-level modulation codes are derived, and a sufficient condition under which the lower

bounds give the exact minimum distance is given. In Section 4, linear multi-level modulation
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codes are introduced and their weight structures are discussed. In Section 5, several specific
methods for constructing multi-level block modulation codes are proposed. Most of the known
block modulation codes are basic multi-level codes constructed from binary block component
codes with no interdependency among them. One problem with the basic multi-level block
modulation codes is the large number of nearest neighbor codewords (or path multiplicity) in
comparison to TCM codes of the same complexity. To solve this problem, interdependency
between consecutive levels of labeling of component codes must be taken into account. In
Section 5, several methods for constructing modulation codes over two to four levels of a
binary labeling are proposed. These proposed construction methods provide interdependency
among component codes. Given a basic multi-level block modulation code C, the proposed
methods give a nonbasic multi-level block modulation code C’ which has the same rate as C, a
minimum squared Euclidean distance not less than that of C, a trellis diagram with the same
number of states as that of C and a smaller number of nearest neighbor codewords than that
of C. In Section 6, error performance of block modulation codes is analyzed for an AWGN
channel based on a soft-decision maximum likelihood decoding. Error probabilities of some
multi-level block codes for 8-PSK,16-PSK and 16-QASK modulations are evaluated based on
their Euclidean weight distributions and simulation results. These codes are shown to provide
significant coding gains over some uncoded reference modulation schemes with little or no
bandwidth expansion. Most of these codes have simple trellis structure, and hence can be

decoded with the soft-decision Viterbi decoding algorithm.

2. Signal Sets, Labeling and Distance Measures

In this section, we present a formulation for signal sets on which modulation codes are to be
constructed. Each signal point is labeled by a string of symbols from a certain finite alphabet.
Distance measures on a signal set are defined and their properties are developed.

Let S be a finite set on which a distance measure between two elements, s and s’, denoted

d(s, '), is defined and satisfies the following conditions:
d(s,s) =d(s',8) 20, (2.1)
d(s,s’) =0 ifandonlyif s=3+" (2.2)
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This set S (or its product) represents a set of elementary signal points (e.g., an MPSK signal
set), and the distance measure d(s, s') denotes the distance measure between two signal points
represented by s and s’ respectively (e.g., the squared Euclidean distance between two signal
points). The error performance of a modulation code over S is evaluated based on this distance
measure.
For most signal sets, the following condition (S1) holds :
(S1) S is chosen as either an additive abelian group S or a finite subset of S, and the distance
measure on S is the restriction to S of a distance measure d on S such that for any two

elements, ¢ and ¢, in S,
d(s,s') =d(s—5',0), (2.3)

where 0 denotes the zero element of the group S and “—” denotes the inverse operation
of the group addition.

Almost all the coded modulation techniques which have been studied so far are based
on bits-to-signal point mapping through signal set partitioning introduced by Ungerboeck
[1]. Many authors [1,11-16,18-21,25] have considered the problem of partitioning a signal
constellation and labeling the parts (signal points) by strings of symbols from a certain finite
alphabet, mostly the binary alphabet {0, 1}. The common point to all these labelings is
that if two strings a;a; - - - a; and @)} - - - a} differ for the first time at the position i, then the
corresponding signal points are at a distance at least d; apart. In this paper, we also follow
this idea. For a positive integer £, we shall only consider a labeling whose set of label strings

is of the following form:
Lg{alag---alza,-GL for lgisl}, (2.4)

where L; is a finite set of two or more symbols from the label alphabet for 1 < 1 < £. Let A
denote the one-to-one mapping from L to S defined by a labeling. Hence each signal point
in S is uniquely represented by a label string in L. The labeling L is said to have £ levels or
length £. For S and ), the i-th distance parameter d; of S with 1 < 1 < £ is defined as follows
[18]:
(1)
dlgmin{d(s,s’) : 8,8€S and s#s'}. (2.5)



(2) For1<i<¢,

o

d; £ min{d(s,s') : s = Maraz---ap),s' = Majaj - ab),

s#s,a;€l;,a€Ljfor1 <j<Y,

and g, =djfor1<j< i}. (2.6)
From the definition of d;, we see that for 1 < i< ¢,
d; < diy1. (2.7)

For a 2%-ary QASK signal set, S is chosen as a subset of 2¢ points from a 2-dimensional
lattice. The distance d(s, s') between two elements, s and s', in S is chosen to be the squared
Euclidean distance between signal points represented by s and s’ respectively. A binary

labeling L of length £ is chosen in such a way [1, 3] that for 1 < i < ¢,
di = 2d; ;. (2.8)
Such a set S with the labeling L is denoted S,e.qask-

For some signal sets satisfying condition (S1), the following condition (S2) also holds:

(S2) We can choose £ subsets, By, Bs, ..., By of S which have the following properties:
(1) For 1 < i< ¢, |Bi] > 2, where | X| denotes the number of elements in a set X.
(2) S is the direct-sum of By, B,,..., By, denoted By + By + --- + By, i.e., for each
element s in S, there are unique b; € B, for 1 <1 < £ such that

3=b1+bz"'+bl. (29)
(3) For1<i<{ b€ B;and VY € B;,
d(b,4') = min {d(b +e,'+¢):candc’in By + Biyz+ - + B;}. (2.10)

For such a signal set, we will use the following. labeling. For 1 <1 < ¢, choose a set L; of | Bj
symbols and a one-to-one mapping A; from L, to B;, and define the mapping A as follows: For
a, € L; with 1 <i< ¢,

Mayaz---ar) 2 Ay(a1) + Ma(62) + - - + A(a). (2.11)
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A set S with the above labeling for which conditions (S1) and (S2) hold is said to be of direct-
sum type. It follows from (2.3), (2.5), (2.6), (2.9) to (2.11) that the i-th distance parameter
of Sis

d; = d[Bi], (2.12)
where d[X] denotes the minimum distance between different elements in a subset X of 5. The
subsets, By, By, - - -, By are said to form a composition of the set S.

For a 2f-ary PSK signal set, the integer group {0,1,2,...,2¢ — 1} under the modulo-2¢
addition is chosen as the set S (i.e., S = 5). Each element in S represents a point in the
2-dimensional 2!-ary PSK signal set. The distance measure d(s, s’) between the two elements,
s and ¢, in S is chosen to be the squared Euclidean distance between two signal points

represented by s and s’ respectively, and is given by

d(s, s') = 4sin? (‘2"'#(3 - 3')) : (2.13)

For 1 <1< {, we choose
B, = {0, 2} (2.14)
Then S is the direct-sum of By, By, ..., B, and the right-hand side of (2.9) is simply the
standard binary representation of the integer s. In this case, By, By, - - -, By are said to form a

basic composition of S. It is easy to check that the condition of (2.10) holds. We use a binary
labeling for S with L; = {0,1}, Ai(0) = 0 and Ai(1) = 27! for 1 < i < £. Then each signal
point in S is labeled by a sequence of £ binary digits. It follows from (2.12) to (2.14) that the

i-th distance parameter of S is
d; = 4sin® (277 7'n), (2.15)

for 1 < i< £ From (2.15), we readily see that
dl = 2dl—l' (2.16)

The above set S with distance measure given by (2.13) is denoted S;c.psk. As another example
of direct-sum type, let S be the set of all integers which is an additive abelian group. For
1<i<{ let B, = {-2""1,2"!}. Define S as follows:
S & {by+by+---+b : b €B; for 1<i<t}
= {-2+1,-2°43,..,-1,1,...,2 - 3,2 - 1}
= Bi+B+---+ By
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For s and ¢’ in 5, define the distance measure d(s,s') on S as (s — s)?. Then it is easy to
show that the property of (2.10) holds and d; = 2. The product, S? = {(s,s') : 5,8’ € S},
may be used to represent a set of signal points for some modulation (a special case is used in
[25]). The construction of a code of length n over the signal set S? is that of a code of length
2n over S.

Since the distance measure on Syqask Of Sze.psk is not simple enough to be used effec-
tively for constructing codes for 2*-QASK or 2-PSK modulation, a simpler working distance
measure is usually taken. If a multi-stage decoding algorithm is used for multi-level modula-
tion codes, an appropriate working distance measure may be more useful than d itself. Such
a working distance measure, denoted g(-, ), is a real function on S x S which satisfies (2.1),

(2.2) and the following condition: for s and s’ in S,
d(s,s") > g(s, 8'). (2.17)

Most modulation codes [1,3,15,17-19] are basically constructed based on the following distance
measure d(-,-). For s = Maya;...a,) and s' = A(aja}...ap) in S, let d(s, s') be defined as
follows:

(1) If s = &', then

ne

d(s,s") =0, (2.18)

(2) Otherwise,
d(s,s") £ da, (2.19)

where h denotes the first suffix such that a, # aj,.

It follows from the definitions of d; and d(s, s’) that for any two elements, s and s', in S,
d(s,s) > d(s, s'). (2.20)

Other examples of working distance measures are the Euclidean weight [1] (see Section 4) and
the Hamming distance with proportionality in [20].

Let L be the label set for the signal set S. We define the distance measure between two
strings in L as follows : For a distance measure g on S and two strings a and ¢’ in L, let
gr(a, o) be defined as

gulaa’) 2 g (Ma), Mo)). (221)
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Notation S will be used as a more generic notation than L. For a positive integer n, let
X" denote the set of all n-tuples over a set X. Let g(-,-) be a measure, a real function,
defined on X? (e.g. d(-,-) or d(-,-)). We extend the domain of g as follows: For two n-tuples,

v =(v1,v%,...,0,) and ¥ = (v}, v3,...,v)) over X,
9(%,¥) £ 3 g(v;,v)). (2.22)
y=1

For a nonempty subset C of X™, define the minimum distance of C with respect to measure

g(+,-), denoted Di[g, C}, as follows:
Dlg,C12 min{g(¥,¥') : ,¥ €C and v#£V}]. (2.23)

(If |C| = 1, then D[g, C] is defined as infinity.) For two real functions, g(-,) and g'(-,-) defined
on X? and a nonempty subset C of X™, it follows from (2.22) and (2.23) that if g(-,-) > ¢'(-, "),
then
Dlg,C] > Dlg', ) (2.24)
We use D[C] and D[C] to denote D[d,C] and D[d, C] respectively for simplicity. It follows
from (2.20) and (2.24) that
D[C] > D[C]. (2.25)
Let C be a block code of length n over S (or L) which represents either the 2-PSK or the
2L-QASK signal set. If each component of codeword ¥ in C is mapped into the corresponding
signal point in the 2-dimensional 2¢-PSK or 2!-QASK signal set, we obtain a block 2‘-PSK
or 2-QASK modulation code with minimum squared Euclidean distance D[C]. The effective
rate of this code is given by [1],
1
- — 2.26
RIC] = -log, O], (2.26)

which is simply the average number of information bits transmitted by C per dimension.

3. Multi-level Block Modulation Code
The multi-level technique is a powerful method for constructing modulation codes with arbi-
trary large minimum squared Euclidean distance from component codes in conjunction with

proper signal mapping. In this section, we present a general formulation for multi-level block



modulation codes in terms of component codes over substrings of labeling symbols. Lower

bounds on the minimum distance of a multi-level code based on a distance measure g, over a

labeling L are derived.

Suppose a signal set S and a labeling L of £ levels for S are given. Since the mapping
from L to S is one-to-one, constructing a code over S is equivalent to constructing a code
over L. For constructing a general multi-level code over L, we must segment the labeling into
sub-labeling and choose the starting symbol position of each sub-labeling. Let m be a positive

integer not greater than £, and let jy, j2,...,Jm+1 be m + 1 integers such that
1= <3< <im<Jmnn=£f+1 (3.1)
For 1 < i < m, let £%) be defined as
€9 2 iy = iy

and let L) denote the set of substrings from the j;-th symbol to the (ji41 — 1)-th symbol of
strings in L defined by (2.4), i.e.,

L(‘) g {a,ia,'_..,.l I TTPE ap € Lh for j,‘ _<_ h < j.‘+1 } (3.2)

Clearly,
L=LWxL®w...x L('n),

where * denotes the concatenation operation. For 1 < i < m, L® is called the i-th level

sub-labeling.
Consider an n-tuple ¥ = (v3,v3,...,9,) over L. For 1 < j < n, the j-th component v, of

¥ can be expressed as the following concatenation of substrings in () to L™ :

Yj = ViV Uym
where v;; € L® for 1 < i< m. For 1 <i < m, we form the following n-tuple over LY:
i(') = (ulii V24y«-«y vni)‘ (3'3)

This n-tuple ¥ is called the i-th component n-tuple of ¥, and ¥ is denoted as follows:

=M oD ... 0g™, (3.4)
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For 1 < i < m, let C; be a block code of length n over L®. From C,,C;,...,Cm, We

form a block code of length n over L as follows:
ce {V(l)tw'r(z)*-n*\?(m) : vV eC for 1<i< m}. (3.5)

Such a code is called a ¢-level code with m components. We denote C with Cy *Cy»---*Cp,
and C; is called the i-th component code of C.
For a distance measure g on [ and 1 < i < m, let ¢(w, w') with w and v’ in L") be

defined as follows:

i A .
g(L)(w, w') = min {gL(w1 W WWig1 e Wy Wy Wi W Wl W)
w; € [Owithj=1,...,i-14i+1,...,mand

w, € LV with j=i+1,...,m}. (3.6)

For any real function g.(-,-) on L x L, a lower bound on the minimum distance D[g.,C] of a

multi-level code C based on the distance measure gy, is given in Lemma 1.

Lemma 1:
D[gL’ C] 2 ll<n.i<n D[g([,‘)a C.'], (3.7

where gg) is defined by (3.6). The equality holds for g, = d; defined by (2.18),(2.19) and
(2.21).

Proof: See Appendix A. AA

This lemma unifies the previous results {17, 18, 21, 25, 27, for g = d, 20, for the Hamming
distance with proportionality]. From (2.17) and (2.24), Lemma 1 gives the following lower
bound on D[C] (= D[d, C)),

D[C] > min Dlg;), Cl] (3.8)

Now we consider a special case for which m = £ and g, = d;. C is formed from ¢

component codes. Let §; be the minimum H;unming distance of C;. Then it follows from

(2.18) to (2.20) and (3.6) that for two different symbols a and o’ in L;,

4 (e, al) = d; (3.9)
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for 1 €1 < ¢ From (2.23) and (3.9), we have
DY, c;) = 6. (3.10)
Combining (2.25), (3.8) and (3.10), we obtain the following lower bound on D[C] [18, 27, 28}:
D[C] > min, 6.d;. (3.11)

The above special case was first proposed by Imai and Hirakawa [17] and then by Ginzburg [18]
and Sayegh [19]. A £-level code with £ components is called a basic multi-level code. Most of
the known block modulation codes are basic multi-level codes. A basic multi-level modulation
code is constructed from { Hamming distance component codes with no interdependency
among them. Simple methods for constructing basic multi-level block codes for various types
of modulations are given in [18,19,23-25,29].

For a signal set S of direct-sum type, we have stronger results on the minimum distance

of a multi-level code which are given in Lemma 2.

Lemma 2: Suppose that S is of direct-sum type.
(1) If £ = 1, then for a and @' in LI(= L,}),

d)a,a") = d(},(a), A,,(a")). (3.12)

(2) For a and o' in L(™),
d(Lm)(a’ a') = d(A("')(a), /\(m)(a:))’ (3.13)

where, for a,_a, 41 a¢in L(™
N (8,8 41"+ Gg) = Ain (i) + Agmt1(8jme1) + - + Ae(ar).
(3) If &9 = 1 for every i other than m, then
D[C] = min D[d(L ,Cil, (3.14)
D[wy, C] min D[wL),C] (3.15)

where w denotes the Euclidean weight deﬁned by (4.4) in the next section.
(4) Hm=~Land |Bj(=|Li]) =2for 1 <i<{ then

DIC] = mig 6:ds, (3.16)

where §; denotes the minimum Hamming distance of C;.
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Proof: See Appendix A. AA

In general, a symbol in L; does not denote a single signal point but a family of subsets
of signal points. For a signal set S of direct-sum type, a £-level block modulation code C over
S (instead of L) can be defined as the following sum of m component codes, Cy,Cy, - -+, Chm:

ne

C 2 C+C+-+Cn

£ (#0494 ¥ v eC for 1<i<m), (3.17)

where the i-th component code C; has symbols from B,, + B,,41+ -+ Bj,,,-1 C S and “+”
denotes the component wise “+” addition. If the assumption in (3) of Lemma 2 is satisfied,
then

DICi+Ci+---+Cp)= min D[C]. (3.18)

When a signal set S and a labeling L of length £ for S are given together, it is desirable
for the labeling to display the detail distance structure of S as much as possible. However
in the construction of multi-level codes, choosing the number of components, m, less than ¢
may results in a code with better performance than a basic ¢-level code. This will be shown
in Section 5.

For a block modulation code to be decoded with a soft-decision maximum likelihood
decoding algorithm, it is desirable that the code has a trellis structure so that the Viterbi
algorithm can be applied. A multi-level code has trellis structure if each of its component codes
has trellis structure. A trellis diagram for the multi-level code C can be obtained by taking the
direct product of trellis diagrams for its component codes. To reduce the decoding complexity,
multi-level modulation codes can be decoded with a multi-stage decoding [17, 20, 25].

4. Linear Multi-level Codes

In this section we study multi-level codes with linear structure. Linear structure makes the
error performance analysis of a code much easier.
Suppose the signal set S can be taken as an additive abelian group under addition +,.

For a distance measure g on S and an n-tuple ¥ over S, define |¥}, as follows:
a
lVI, = g(¥, 0)' (4.1)
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where 0 denotes the all-zero n-tuple over S. The parameter |¥|, is called the weight of ¥ with
respect to the measure g.

A block code C over S is said to be linear with respect to +,, if C is closed under
the component-wise addition +,. Suppose that a distance measure (or a working distance

measure) g on S satisfies the following condition: For s and &' in S,
9(3’3,) = g(s “a 3’1 0)’ (42)

where —, denotes the inverse of +, and 0 is the zero element in S with respect to +,. Then

it follows from (2.22), (2.23), (4.1) and (4.2) that for a linear block code C over S,
Dlg,C] = min {|v];: v € C - {0} }. (4.3)

As a result, the error performance evaluation of C with respect to the distance measure g is
reduced to that of C in terms of the weight measure |- |,.

For the sake of simplicity, we assume that the label L is the set of all binary strings of
length £. Then S can be taken as a binary vector space of dimension £ in the following sense.
For two elements s and s' in S labeled with aya; - - - a; and a}a} - - - @} respectively, define s ® s’
as the element labeled with the binary string of length £ whose i-th symbol is the modulo-2
sum of a; and a’ for 1 < i < £. Note that d(s, s') is not necessarily equal to d(s @ s',0) (e.g.,
S,epsk with £ > 3). However, the distance measure d(-,-) defined by (2.18) and (2.19) does
satisfy the condition of (4.2) with respect to @. The tightest measure satisfying (4.2) with
respect to @, denoted w, is given by

w(s, s') 2 min{d(t,t') €S andtdt =s @3'}. (4.4)

| |o is the Euclidean weight measure first described in [1). For example, consider Sgpsk =
{0,1,...,7}. For this case, |s|, = |s|4 for s # 5 and |5|, = d3 — d, > [5|¢ = dy, where d}, d;
and dj are defined by (2.15).

Most of known block modulation codes are linear with respect to &.
For v = (AM(v3v12. .- v1e), Mva1922 - - - ¥22), - -, M(¥n1Un3 - - - Unt)) € S™, let B(¥) denote the fol-
lowing binary nf-tuple:

ﬁ(v) = (vlhvlﬁr“-:ull»v?h””v e 3V2ty .-y Un1y Una,y - -wvnl)'
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For a block code C of length n over S, we form the following binary block code B[C] of length
nf:

BICI 2 {B(¥) : veC}. (4.5)
If and only if B[C] is linear, C is linear with respect to @. For a linear block code C over S,

the number of information bits, called the dimension, of C is defined to be that of S[C]. Let
B~} denote the inverse mapping of 3. The dual code of C, denoted C*, is defined as

ct 2 gBlC]Y, (4.6)

where S[C]* denotes the dual code [30] of 5[C].
If a code C over S is linear with respect to @, then the complete weight distribution [31] of
C over S is useful for evaluating the error performance of C. For an n-tuple ¥ = (vy,v2,..., ¥a)

over S, the composition of ¥, denoted comp(¥), is a 2-tuple,
t= (t01t1a v ’tZ‘—l)a

where t; is the number of components in ¥ equal to the binary string aja; - - - a such that
¢

Y a,27' = i. Let N¢(t) denote the number of codewords ¥ in C with comp(v) = t. Let

=1

Teomp be the set
Teomp = {(to, t1y. .-, tae_y) : 0 <t; < nowith0<i<2.

Then
{Nc(t) : t € Teomp}

is the complete weight distribution of C. For a distance measure g and a nonnegative real
number 6, let N,(6) or N, c(6) denote the number of codewords ¥ in C such that |V}, = 6.
N,y(5) is used to evaluate the error performance of C (see Sec. 6). Once the complete weight
distribution is known, N,(6) can be computed. If C is linear and log, |C| is moderate, then
the complete weight distribution of C can be computed simply by generating all codewords of
C. If nl — log, |C| is moderate, the complete weight distribution of C can be computed from
that of the dual code C* of C defined by (4.6) [31, 32].
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5. Component Code Construction
In section 3, we presented a general formulation for multi-level modulation codes in terms of
component codes over substrings of labeling symbols. Suppose a signal set S and its labeling
L of length ¢ are given. To form a {-level modulation code over S with m components, we
must first construct the component codes with proper minimum distances based on a distance
measure g;. For 1 < i < m, the i-th component is constructed based only on the i-th level
sub-labeling L of length £V and the distance measure g\"). Once the component codes are
constructed, they are combined to form a £-level modulation code by concatenating the m
sub-labeling strings at each component position and then replacing each labeling string by its
corresponding signal point in S. The simplest case is to construct basic £-level modulation
codes with m = £. One problem with basic multi-level block modulation codes over S is
their large number of nearest neighbor codewords (path multiplicity), in comparison to trellis
modulation codes, e.g., Ungerboeck codes [1], of the same complexity. To solve this problem,
interrelation between consecutive levels of given labeling must be taken into account. In this
section, we present several methods for constructing codes over two to four levels of a binary
labeling with interdependency between consecutive levels.

For simplicity, we omit the superfix (), write dy,d;,... for distance parameters dj,,
dj;+1,-- -, define L as {0,1}¢ and write d, d, w for distance measures d;, d;, w respectively.
We also define the following notations:

(1) For 1 < i < n, & denotes the binary unit n-tuple whose i-th component is one and whose
other components are zero.

(2) P, denotes the binary (n,n — 1) linear code which consists of all the even-weight binary
n-tuples.

(3) P% denotes the dual code of P, which consists of the all-zero and all-one n-tuples.

(4) V, denotes the vector space of all binary n-tuples.

(5) RM,; denotes the j-th order Reed-Muller code of length n = 2*. A boolean polyno-
mial p(z;,z3,- - -, Zs) represents the binary 2*-tuple whose i-th component is given by
p(i1, 92, ..,15), where (4;,13,...,1)) is the standard binary representation of i — 1 with
the least significant bit ;.

(6) For two j-tuples @ = (uy,us,...,u;) and ¥ = (v, v3,...,v;), let G0V denote the 2j-tuple

(u1,ug,...,45,91,0s,...,v;). For a binary (n, k) linear code C with minimum Hamming
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distance 6 and an (n, k') linear subcode C’ of C with minimum Hamming distance &', let

p(C,C") be defined as
W(C,C'") 2 {ao(a®v) : 1€C and VEC'}. (5.1)

Then u(C,C") is a (2, k + k') linear code with minimum Hamming distance min{2$, §'}.
This p-construction is a special case of the |uju + v| construction [31, p.76] in that C’ is

restricted to be a subcode of C. It is known [31] that for 0 < j < A,

RM;.'J' = /J(RMh_l.j, RM&-IJ—I); where RM;._L_; = {6} (52)

5.1 Code Construction for the Case with { =2 and g =d
A. Gray Code Indexing Method
This construction method [15, 20] has been proposed for the special case for which the

following condition holds:

For a binary 2n-tuple ¥ = (v;, 95, . . ., ¥2,), define two binary n-tuples, ¢1(¥) = (11,42, ., Un)

and @,(¥) = (u}, uj, ..., u,) as follows: For 1 < j <n,

(1) If v; = vj4n =0, then u, = u} = 0; (5-4)
(2) f v; =0 and v;4, = |, then u, =1 and u] = 0; (5.5)
(3)If v; =1 and vj4, = 0, then u; = u] = 1; and (5.6)
(4) fv;=vj4n=1,theny; =0and u) = 1. (5.7)

Let o(¥) denote the following n-tuple over L = {0, 1}*:
9(¥) = @1(¥) * pa(¥). (5.8)

For two binary 2n-tuples, ¥ and ¥, it follows from the condition of (5.3) and definition of the

mapping ¢ that
d(p(9), p(¥)) = [V & V|u - dy, (5.9)
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where |¥|y denote the Hamming weight of ¥ and & denotes the component-wise modulo-2
addition. Let C, be a binary code of length 2n and minimum Hamming distance é. Define
the following block code of length n over L = {0, 1},

e[C] = {p(¥) : V€ G} (5.10)

Clearly, o[C}) is a two-level code with two levels of interrelated labeling. If C, is linear, we
can readily see that ¢[C}] is also linear with respect to @. It follows from (5.9) and (5.10)
that

le[Ce]l = G, (5.11)

DIolC]] = 6d,. (5.12)

This construction will be used as a part of the construction presented in Section 5.2.

It follows from (5.4) to (5.7) that
plio(aPv))=v=*i (5.13)

Hence,

p[u(C1, C)] = Cy + C. (5.14)

From (5.14) we see that to derive a nonbasic two-level code with the Gray code indexing

method, we need to choose C;, which cannot be constructed by the |uju + v| construction.

B. Cross-Over Construction

Now we consider the case where the distance condition of (5.3) does not hold. Let Cy
be a binary (n, k;) linear code with minimum Hamming distance §,. C,; may consist of only
the all-zero n-tuple. In such a case, §; is defined to be infinite. Let Cj; be a binary (n, k3)

linear code. Let f be a linear mapping from Cj; to the set
(Va — Cu) U {0}.

For @ and v in Cy,, f(i ® ¥) = f(4) ® f(¥). Now we define a block code of length n over
L(={0,1}?) as follows:

F(Cy, f,Ca) 2 {(0 @ f())*9: 0 € Cy and ¥ € Cy}. (5.15)
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It is clear that F(Cy,, f,Cy;) contains k; + k; information bits, and if f(¥) = 0 for every V in
Cy2, F(Cyy, f, Cy) is simply the basic two-level code Cy; * Cp,.
Next we examine the minimum distance of F(Cy, f,Csa). Define the following linear
subcode of Cyy:
Cr2o = {(veCyn: f(v)= 0}. (5.16)

Let 6,0 denote the minimum Hamming distance of Cy;0. Define a subcode of F(Cyy, f, Cy2)

as follows:

C’ é {(l_l @ f(\.()) *V:4€Cy, and v € Cy; — Cbg'o}. (517)
Since F(Ch, f,Cra) — C' = Cy; * Cia, it follows from Lemma 1 and (3.10) that
Q[F(Cbl) f1 Cb?)] = !nin{(sldl) 62,0d21 -QIC,]} (518)

Both 6, and D[C’] depend on the mapping f. Define the following set of n-tuples in ({0, 1}" -
Cu) U {0};
flCo] = {f(¥): ¥ € Ci2}. (5.19)

Let §4[X] denote the minimum nonzero Hamming weight of a set X of binary tuples of the
same length. Let (i ® f(¥)) * ¥ be an n-tuple in C". Since v & Ciy0, f(¥) # 0. Since @ € Cy
and Cy N f[Cy] = {0}, @ ® f(¥) # 0. This implies the following inequality:

D[C'] > 64[Ch & f[Cr2]]d, (5.20)
where for subsets X and Y of {0, 1}",
XoYZS{a@v:ieXandveY} (5.21)

Since 8; > §4[Cu1 ® f[Cua]), it follows from (5.18) and (5.20) that we obtain the following
lower bound on D[F(Cy, f,Cu)):

D [F(Cy, f,Ct)} 2 min {62,0d3, 65 [Cs1 @ f[Cua]]d1 }. (5.22)

Recently, Tanner [20, Theorem 3] has given a code construction method in terms of a
parity-check matrix which actually corresponds to a special case of the above construction
with:

(1) dy = 0.586 and d; = 2,
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(2) Cizis Va,
(3) f(¥) = 0 for any even-weight n-tuple ¥ and f(¥) is a fixed n-tuple i, for any odd-weight
n-tuple ¥, and
(4) 6o and Cy; generate a code with minimum Hamming distance 7.
In this case, Chy is the set of all the even-weight n-tuple with 8,5 = 2. From condition (4),
§4[Co1 @ f[Ci3]] = 7. Consequently, the right side of (5.22) is 4, i.e.,

D[F(Cu, f,Cw)] 2 4

In the following we present two specific cross-over constructions. Codes constructed
based on these methods have smaller numbers of nearest neighbor codewords than that of

their corresponding basic two-level codes.

B.1 Class-1 Cross-over Construction
Let C; with i = 1 or 2 be a binary (n, k;) linear code with minimum Hamming weight &;.
Consider the basic 2-level code Cy.xC;, denoted C. Let {i,,1;,..., s, } be a basis of C;, and
let 7, denote n — k;. Suppose that ky > 7y, |,,|g = 6; and the last component of @,, is zero.
Let H be a parity-check matrix of C; whose last column is the transposition of (0,0,...,0,1).
For 1 <1 < ry, let h; be the i-th row of H. Now we define F(Cy, f, Cs3), denoted C’, such
that |C’| = |C| and D[C"] > D[C].
(1) Let Cyy be the (n, ky — r;) linear subcode of C, generated by G,,41, 0,42, -, Ok, -
(2) Define Cy; as V,.
(3) For binary n-tuple ¥, define f(¥) as follows:
(%) & 3(6, 9, (5.23)
where (h;, ¥) is the inner product of h; and V.
Then, f(¥) = 0 if and only if ¥ € C;, that is, Cy20 = C; and 835 = §;. Since Cy @ f[Cia] = C,
it follows from (5.22) that .
D[C"] > min{$,d,, 6,3}, (5-24)

where the equality holds if §,d; > §;d;. Note that |f(E,) * &) = |, #&,)g 2 6idy +da. If
61dy < 6343, then
N‘c.(&d,) < N‘c(axdl). (5.25)
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B.2 Class-2 Cross-over Construction

Next we consider the case where 6;d; > 6,d,. We restrict C; and C, to be constructed
by the u-construction defined by (5.1).

For an even positive integer n, let C;; be a binary (n/2, k;;) linear code with minimum
Hamming distance &;/2 or greater, and let C;; be an (n/2,k;;) linear subcode of C;; with
minimum Hamming distance §;. Then u(Ci;, Ci3), denoted C;, is an (n, k;; + k,2) linear code
with minimum Hamming distance §;.

Suppose that {@,, : 1 < j < ki;} is a basis of C;; and {1, : ki1 — ki < j < kiy } is a basis
of Ci;. Then the following set of binary n-tuples is a basis of C;:

{u, 00, :1<j<kiy—kip}U{t;00,000;: ki —kia<j<ka}. (5.26)
It is easy to show that the dual code of C;, denoted C}, is given by
Ct 2 u(Ch,ch). (5.27)

Now we define F(Cy, f, Cy2), denoted ¥(Cj,C3), such that |y(Cy,Cr)| = |Cy * Co| =
2kutkatkntkn and D[y(Cy, C;)] > min{8,d, 62d;} = D[C; * C;). For simplicity, assume that

ki — ki3 2> kg — kn. (5.28)

Define C);, Cy; and f as follows:

(1)
Cu £ u(C}y, Cna), (5.29)

where C}, is the linear subcode of C); generated by {@;, : k21 — kx < j < ku}.
(2)
Cia £ Cyy 0 Cay, (5.30)

where for sets X and Y of n-tuples, X oY £ {aov:a€ X, veY}
(3) Let hy,hy,..., By, —k, be linearly independent n/2-tuples in C3; — C3. For binary n/2-
tuples ¥ and ¥ in Cy,

f(Vo¥) 2 (h'f"(ﬁ.-, \'r’)ﬂ,;) o (hgn(ﬁ.-,v)ﬁu) : (5.31)

=] =]



Note that f(¥ o ') = 0 if and only if both ¥ and V' are in Cy;. The key of this construction
is “crossing” in that f maps the left half (or the right half) of the second component binary
n-tuple into the right half (or the left half) of the first component binary n-tuple. The distance

and weight properties are characterized by Lemma 3.

Lemma 3:

(1)
D[y(C1,C3)] > min{6,d;, 62d;}. (5.32)

(2) If &:d; > 62d; and kzy > kg3, then the equality holds in (5.32) and

Nyxcio(b2ds) = 2Ngcy,(62) _
< Npc(61) = Nycieca(62da). (5.33)

where Ny c(6) denotes the number of codewords of Hamming weight 6 in code C.
(3) If Cy » C; has a t-section trellis diagram with s states, then (C),C;) has a t-section

trellis diagram with s states.

Proof: See Appendix B. AA

Example 5.1: Assume that 4d, > d; (e.g., Sepsk)- Let p and ¢ be nonnegative integers such
that ¢ + 2 < p, and let C; and C; be defined as

14

C, RMp,q = “(RMp—l,q: RMp—-l,q—l))

RMp.q+2 = “(RMP—1.9+21 RMp-—l,q+1)'

e

C;

q - q—1 - q+1 -
Thenn=2°,6, =279, ky) = }:(pj 1),k12= Z(pj 1),52 =292 ky = Z(pj 1),

=0 =0 3=0
q+1 -1 - -
kn = E (P N ), ku - kn = (P 1), and kn -_ kgg = (P 1) Suppose that D S 2q + 3
jmo \ ] q q+2

Then kyy — ky3 > kay — ka2, and D[y(Cy, C;)] = 2P~972d;. This gives a class of two-level codes.
(1) As an example, consider the case where p = 3 and ¢ = 0. Thenn = 8, C; = B =
WP (D)), kin =1, kia =0, C = Py = p(V4, R), kay = 4, kza = 3, Cy = {0}, Ca =
Vi oV, = V3 and mapping f is defined as follows:

f(&)£(0,0,0,0,1,1,1,1), for 1<i<4,
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f(8)2(1,1,1,1,0,0,0,0), for 5<i<8.

Then the code,
¥{(C1,C2) £ F(Cw, f,Cu) = {f(¥) ¥ : ¥ € Vi},

has 8 information bits, and minimum weight 2d; with respect to the distance measure d. This
code has an 8-section trellis diagram with 4 states as shown in Figure 1.
(2) Next consider the case where p = 4 and ¢ = 1. Then, n = 16,C; = RM,; = u(RMs,, F),
ki =4, ks =1, C, = Pig = u(Va, Ps), ka3 = 8, kyy = 7, Cyy can be chosen to be the (16, 4)
linear code generated by four binary 16-tuples represented by boolean polynomials 1, z3, z3,
and z, respectively, and Cy; = Vg * Vg = Vjs. The mapping f from Cy; to RM,; is defined as
follows:

f(&) = z:(z4 D 1,), for 1<i<16, (5.34)

where iy, =0for 1 <i<8andi =1for 93<i< 16.
(3) For four combinations of p and ¢, Ngc(D[C]) for ¥(C), C3) is compared with that for
€y » C, in Table-1. The number of states of a trellis diagram for C; * C; is computed based
on the number of states of a trellis diagram for RM, , [33].
(4) Consider the case where the signal set is Sgpsk. Let C(!) and C@® denote 8-PSK codes,
v(Pg, Ps) * Vg and y(RM,;, Pis) * Vie, respectively. Now, we compare these two codes with
two corresponding 8 PSK codes, C L ptePy*V;and CY 2 RM,, * P * Vis. We find
that

RICW] = RICP] =1, RIC™) = RICP] = 9/8,

D¢} = DIcY’] = D[C®] = D[Cy ] = 4,
Nocr(4) =56, N, o0(4) = 120,
N, con(4) = 240, Nd,C(B’)(4) = 496.

We see that C\") and C(® have smaller path multiplicities than those of C’(Bl ) and Cg ). Both
Cc® and Cg ) have 8-section trellis diagrams with 4 states, and both C¥ and C'(; ) have 4
section trellis diagrams with 16 states. These four codes are linear with respect to modulo-8
addition and C(Bl), C? and Cg) are invariant under 45° phase shift and C(") is invariant under
90° phase shift [35]. Performance analysis for these codes is shown in the next section. AA



It follows from (5.26) and (5.29) that
Cy = C}; @ (Cra 0 Cna),

where CJ, is a binary (n, k;; — k12 — k21 + k21) linear code generated by {G1;00y; : ko —kn <
7 < kyy — ki2}. I Cy3 and Cy; are constructed by the y-construction, the class-2 cross-over
construction can be recursively applied to Cy; * C3;.
If inequality (5.28) is not true, then modify the construction as follows:
(1) Cu = Ci20Chy,
(2)  Cu 2 p(Ch,Cn),
where C}, is the linear subcode of Cy generated by {fz; : ki1 — k12 <J < ka2 }.
(3) In (5.31), replace k3; — kz2 by ki3 — k3.

5.2 Code Construction for the Case with £ > 3, g =d or w and d; = 2d,—

The two constructions stated in (A) and (B) of Section 5.1 can be combined for the case where

£ = 3 and the following condition holds:
d; = 2d,. (5.35)

Let C,; be a binary (n, k,) linear code with minimum Hamming distance §;. Let Cy; be

a binary (2n, k;) linear code. Let f be a linear mapping form Cj; to the set
(Va — Cu) U{0}.
Now we define a block code of length n over the set L(= {0, 1)) as follows:
H(Cu, f,Cia) £ {(0 @ f(9)) * ¢1(9) # 3(7) : 1 € Cny and ¥ € Co} (5.36)
where the mappings ¢; and ¢, are defined by (5.4) to (5.7). It is clear that
|H(Ch, f, Cia)| = 25", (5.37)
It can be shown that

D{H(Cw, f,Cx)] = min{6,dy, &30ds, D[C]}
> min{8;0dz, 84[Cn ® f[Cua]}d1}, (5.38)
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where §,¢9 denotes the minimum Hamming distance of Cyz (& {v€Cy : f(V) =0}) and
cé {(a ® f(¥)) = 01(¥) * p2(¥) : @ € Cyy and V € Cyz — Cig0}. The class-1 or 2 cross-over
construction can be applied to this case.

We use an example to illustrate the above construction method and give a class of zero-tail

4-state Ungerboeck’s TCM codes.

Example 5.2: Let g, and g, be two binary 2n-tuples defined as follows:

g 2 (1,010 ... 0),
& 2 (1,0,...,0,1,0,...,0).
D

Let Cj; be the trivial code {0}. Then &; = 0o. Let Cy, be the binary (2n,2n — 2) linear code
generated by the set,

{o'g, : 0<i<n-2}u{c'g, : 0<i<n}

- where 07V denotes the tuple obtained from ¥ by cyclically shifting ¥ to the right j places.
Then ¢,[Cy;] is the binary (n,n — 2) linear code generated by the set,

{¢*(1,0,1,0,0,...,0) : 0<i<n-2}

and ,[Cy,] is simply the vector space, {0, 1}". Let f be the mapping from Cj;, to {0,1}" such
that

I

f(a'g,) 0'(0,1,0,...,0) for0<i<n-—2,

f(aigz)

2 0 for0<i<n.

Then, it follows from (5.36) that H(Cy, f, Cia), denoted C, is a linear code of length n over
L(= {0, 1}?) with effective rate R[C] = (n — 1)/n.
Now we continue to determine D[C]. Note that Cyyp is the binary (2n,n) linear code
generated by the set, )
{o'g; : 1<i<n}.

For any 2n-tuple ¥ € Cy; — Ci30, ¥ can be expressed as
V=0"g +0"g + o +otg +0
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where 1 <A< n—20<14 <i3<---<1 <n-2and @ € Cyp. Then the (3; + 1)
th and (i) + 3)-th components of ¢;(¥) are equal to 1. On the other hand, the (¢; + 1)-
th and (i) + 3)-th components of f(¥) are equal to zero. Consider the weight composition,

(to,t1,t3, 3,24, ts, te, t7), of the n-tuple w = f(¥)*p;(V)*p(¥). Then the following inequality,
ts 416> 2
holds. Since ¢; + t3 +ts+¢t7; > 1 and
IW|g = (81 +t3 +ts + t7)dy + (82 + te)d; + teds,
we have that

D[C] > dy + 245

Since é; = o0 and 6,4 = 2, it follows from (5.38) that
Q[C] = 2d2

Consider the case for which the signal set is Sg psx. Then C is a zero-tail 4-state Ungerboeck’s
8PSK TCM code[l] with minimum squared Euclidean distance D[C] = 4(d; = 2). The
number of codewords with minimum squared Euclidean distance from the all-zero codeword
0 is n. This code C is invariant only under 180° phase rotation [35]. Similarly, zero-tail
Ungerboeck’s TCM codes with 8 or more states can be constructed [24, 34]. JAYA

For the last three levels of S of direct-sum type (e.g., Sye.psk with £ > 3), lower bounds

on the minimum Euclidean weight w tighter than those on d can be used.

Example 5.3: Suppose we want to construct an 8-PSK code C of length n = 16 with
R[C] =1 and D[C] = d; + 4d;. Let n = 16, Cy; = {0} and Cyz = {0,1}*. For 1 <i < 32, let
&; be the binary unit 32-tuple whose i-th component is one and whose other components are

zero. Define the mapping f from Cy = {0, 1} to RM,, as follows:

f(&) & zn(1@32), (5.39)

fle) & i,ez‘:.',z,-, for1<i<16o0r17<i<32 (5.40)
=1

fl&r) & 1, (5.41)



where (i}, 13, 3, 14, is) is the standard binary representation of i — 1. It can be shown that (1)
D[C] = D{w,C) = d, + 4d; = 4.344, (2) Ny.(d; + 4d;) = 36, and (3) this code has a 4-section
trellis diagram with 2% states. AA

For the case where £ = 4, d; = 2d, and d, = 2ds, the Gray code indexing method can
be used for the first and second levels as well as the third and fourth levels. The cross-over
construction also can be applied to this case. For i = 1 or 2, let Cy be a binary (2n, k)

linear code with minimum Hamming distance §;. Let f be the mapping from Cj; to the set

(Van — Ciy) U {0}. Define a block code of length n over L = {0,1}* as follows:
K(Cu1, f,Cs3) £ {p(0 & f(¥)) x (V) : @ € Cyy and ¥ € Cia},
where the mapping ¢ is defined by (5.8). Clearly
|K(Ch1, f, Coa)l = ghith,
It can be shown that

D[K(Cy, f,Cy)] = min{édy, b20d3, D[C’]}
> min{éz0d3, 65[Cu ® f(Cr)]d:},

where 6, denotes the minimum Hamming distance of Cyp (-‘A= {velCy : f(¥)= 0}) and

C'2 {p(a® f(v)) * (V) : 1 € Cy and ¥ € Coz — Crzo}-

6. Performance Analysis

In this section we assume that the signal set S satisfies condition (S1) and that every codeword
of C is equally likely to be transmitted. Let p;. be the probability of an incorrect decoding for
a block. For a codeword i in C, let P, (1) be the probability of an incorrect decoding when
Q is transmitted.

For a block code C over S of length n and an n-tuple 1 over S, let C[i] be defined as
Cla]2 {v-a:vecC}, (6.1)

where — denotes the component-wise subtraction. We shall only consider decoding of a code

with the following property:



(De) For two codewords @ and ¥ in C, if there is a one-to-one correspondence between Cla]

and C[¥] which preserves the distance measure d between two n-tuples, then
P.(a) = Pie(¥). (6.2)

Most of the proposed decoding algorithms have the above property. If S=5(ie, Sis an
abelian additive group under addition + (e.g., S;epsk) ) and C is linear with respect to +,
then for any 1@ in C, Cla) = C and therefore

pic = P.(0), (6.3)

where 0 denotes the all zero n-tuple. For a linear code C with respect to @, the above
equality is not necessarily true. For a zero-tail Ungerboeck’s 8-PSK TCM code [1] of length
9 with the minimum squared Euclidean distance d; + 2d; where d; and d; are defined by
(2.15), the number of codewords with the minimum squared Euclidean distance from codeword
i =(4,1,20,...,0) is 12, whereas that from the all-zero codeword 0 is 13, and simulation
result on P,.(0) and P..(i) by the maximum likelihood decoding for an additive white Gaussian
noise (AWGN) channel at SNR per information bit = 6 dB shows a difference beyond the upper
limit of confidence interval [34].

For a block code C over S (in general, a nonlinear code with respect to +), let Co be
defined as

Co 2 {@|C[i]=C and i € C}.

Then Cg is not empty if and only if 0 € C. For S,epsk, any codeword in a linear code C with

respect to ® whose components are 0 or 2/~! is in Co.

Lemma 4 is useful for performance analysis of 2-PSK code.

Lemma 4: Suppose that @ € C. Then the following properties hold:
(1) C, is closed under the component wise + addition.
(2) For codewords @ and ¢ in C, C[d] = C[v] if and only if & — ¥ € C,.
(3) Suppose that a subset C}, of C is closed under the component wise + addition. Then
C} C G, if and only if there is a subset of C] of C such that

{v+a:v€Cyanda€Ci}=C. (6.4)
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Proof: See Appendix D. AA
Suppose that Cj and C} meet the conditions stated in (3) of the above lemma. Let @,(=
0), 1, ..., 8, be representatives of cosets of Cy in C, where ¢ = |C|/|Cy|. Then it follows
from (De) and (2) of Lemma 4 that for v in Cj and 1 < j < g,

C[v + u;] = C[u,].

Hence we have that
1 _
Pic = EZ P..(u;). (6.5)

=1
Example 6.1: Consider the basic 8-PSK code C 2 PL x RM,; * Pg with R[C] = 27/32 and
D[C] = 8 [26, 34]. Let C; and C] be defined as

]2

C(; Plji * RM,; * Py,

{6 *ax0:1 € (RM(J - RM(J) U {6}}

o

G

Then Lemma 2 in [35] (or Lemma A in [34]) implies that Cj is closed under the component-wise

modulo-8 addition (denoted +;) and
{v+sa:v€Cyanda € Ci} =C.

Let ﬁ(:) and ﬁgz) be codewords in RM, , represented by boolean polynomials z,z; and z,z; &
737, respectively. Note that C, C) and RM,; are invariant under a permutation (called a
linear transformation) on the bit positions induced by an invertible linear transformation on
the binary representations of bit positions numbered 0 to 15. RM,, consists of 64 cosets
of RM,, which are partitioned into three equivalent classes under linear transformations
[31, Ch.15.2]. The first class is RM,; itself. The second class consists of 35 cosets whose
representatives are obtained from ﬁgz) by linear transformations, and the third class consists of
(2

28 cosets whose representatives are obtained from @iy’ by linear transformations. Consequently

it follows from (De) and (6.5) that
1
Pic = &2 {Pi(04) + 35P.(83) + 28F.(D3)} ,

where 1; 2 0x0x0, 0; 2 0+ +0 and 03 £ 0+0{?+0. C[1,], C[0;] and C[@;] have the same

number, 1240, of nearest neighbor codewords from 0, but the numbers of the second nearest
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neighbor codewords from 0 in C[d,], C[;] and C[u;] are 2048, 1024 and 1024, respectively.
Simulation results on P..(1;), Pi(ii;) and P.(i;) by the maximum likelihood decoding for
an AWGN channel at SNR per information bit = 4.7dB are 4.41 x 1073, 4.11 x 10~ and
4.05 x 1073, respectively. AA

Now we consider the maximum likelihood decoding for an AWGN channel. Let R" denote
the set of all r-tuples of real numbers. For ¥ = (s4,32,...,35,) over S, let o(¥) denote the
2n-tuple in R*", represented by ¥, and assume that for @ and v € S", d(1, ¥) is defined as the
squared Euclidean distance between o(i) and ¢(¥). For 2n-tuples Z and 2’ in R let (2,2)

denote the inner product of Z and Z'. It follows from (2.3) and (2.22) that for G and Vv over S,
d(a,v) = d(v-1u,0)
= (o(¥) - o(@), 0(¥) —a(1)). (6.6)

We write |i—¥|q for d(i—¥, 0). Suppose that a codeword i in C is transmitted and Z € R*™is
received. Since the probability of an incorrect decoding only depends on the squared Euclidean
distances among (i), Z and o(¥) for all codewords ¥ other than i@, we consider C[u] instead
of C and suppose that the all-zero n-tuple 0 in C[i] is transmitted. Decoding is correct if
and only if
(Z - 0(¥),2 — a(¥)) > (Z — 0(0),Z — (0)) (6.7)
for every n-tuple ¥ in C[@] other than 0. The above inequality can be rewritten into the
following inequality:
2(a(¥) — 0(0),% — a(0)) < |¥]a. (6.8)

For an n-tuple ¥ € C[i1] , let U(¥) be the set of 2n-tuples over R, Z, which satisfy the inequality
(6.7) (or (6.8)) and the probability, denoted ¢.(¥), that a received 2n-tuple Z is not in U(v)

0(9)=Q (\/'%i‘-’ ) (69)

where p = 2R[C]Ey/No, Ey/No denotes SNR per information bits and
__1 [* _ep
Q(z) = A et 14dt.

A subset T of C[@d] — {0} is said to be C[ii]-representative, if

nuve= [ U. (6.10)
v€T vecla)-{0)

is given by [36]
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Since decoding is correct if and only if a received 2n-tuple Z is in the set of the right-hand
side of (6.10), we have the following upper bound on P (1):

Pe() < 3 ge(¥), (6.11)

ver

where T is a C[u]-representative set. For a distance measure g, a finite subset T of S"
and a positive real number 6, let N,7(§) denote the number of n-tuples ¥ in T such that
ng(-é- g9(¥,0)) = 6, and let A, be the set of positive real number § such that Ngr(8) # 0.
Then it follows from (6.9) and (6.11) that we have the following union bound on P, (a):

P@) < ¥ Nx(6)Q (\@) , (6.12)
s€h, T

where T is a Cii]-representative set. In particular, if C is linear with respect to +, then it

follows from (6.3) and (6.12) that

Pic < 2 NJ,T(‘S)Q( 6—28 , (6.13)
S€hgr v )

where T is a C-representative set. Since a distance measure satisfies (2.17) and the function
Q(-) is monotonically decreasing, we can replace d by any distance measure in the right-hand

side of (6.12). If C is linear with respect to @, then we have the following upper bound on

Dic < Z NW,T((S)Q (@) ’ (614)
§€A, T

where w denotes the Euclidean weight measure defined by (4.4) and T is either C or the

Pic:

union of C[i,]-representative sets over all @, in (6.5). Lemma 5 can be used for choosing a

representative set.

Lemma 5: For ¥, ¥ and ¥” in 5", suppose that there are two nonnegative real numbers v,

v such that
o(¥") = 0(0) = n(o(¥) - (0)) + na(o(¥') — 0(0)), (6.15)
19"le 2 M|¥]a + mlV]e (6.16)
Then it holds that
U(@9)nU(¥) cU@"). (6.17)
Proof: Inequality (6.17) follows from the definition of U(¥). AA
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If we choose ¥ and V' as members of a representative set, then Lemma 5 shows that we don’t
need to choose V" as a member. If S is a 2-dimensional lattice, this lemma can be easily
applied.

Example 6.2: Consider the basic 4-level code, Pt * RM3, * Py » V3 (= ¢[RMy,] * ¢[Pie))
over Sieqask, and assume that the squared signal configuration is used and the signal point
labeled with 0000 is nearest to the center of the 2-dimensional signal set. Then the following
upper bound on P.(0) is derived.

P.(0) < 3960Q (4\/-253 ' + 14336Q (4\/% ’ . (6.18)

AA
Even for S;¢ psk, the above lemma is useful. Let s;, s| and s} denote the j-th components
of ¥, ¥ and ¥" over S,.psk respectively. There are two simple cases for which the above
conditions (6.15) and (6.16) hold [22],
(i) For each j, either s;- s} =0 or s =2" + 5, (mod 2):
Let y =% =1 Ifs;-, =0, then s] = s, + s, and otherwise, sj = 2f-1,
(ii) Each component of ¥ is 0 or 2!, and there is an s € Sye.psk such that 0 < s < 22 and
s} is s or 2! — s for every j with s; #0:
Let v, = cos (2“‘3«) and , =1. Ifs; =2 and ¢} = s (or 2/ — s), then s} = 201 g
(or 271 + s), and otherwise, 57 = s.
By using these results, relatively small representative sets can be chosen to improve the upper
bound (6.13) or (6.14) for several 8-PSK or 16-PSK codes [29, 35]. As examples, the following
upper bounds on p;. for Cg) and C() defined in part (4) of Example 5.1 are derived :

P < 120Q (\/EZ) +128Q (\/4(2 ~ V2)p)
+1024Q (\/(8 - 3~/§)p) , for ¢, (6.19)

pie < 56Q(y/20) +128Q (Vs ~ 2v2)p)
+64Q (\/4(2 —V2)p) +256Q (\/(5 —V2)p)
+256Q (\/(s - 3\/2')p) +256Q (\/2(4 - s/i)p) . for M. (6.20)

AA
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Let P, denote an upper bound on p;, e.g., the right-hand sides of the above expressions.
Let P., denote the simulation result on p;.. We use both P.. and P, , as measures of error
performance of a block modulation code. Figures 2, 3 and 4 give the error performances of 8-
PSK modulation codes CtV), C(?) defined in part (4) of Example 5.1, and 16-PSK modulation
code P RMg 3% P33 xV;; which is linear with respect to modulo-16 addition [35] respectively.
These error performances are compared with those of uncoded QPSK systems for transmitting
the same number of information bits. From Figures 2 and 3, we see that the difference between
P;. and P, is small for SNR greater than 6 dB per information bit. Table 2 (or 3) compares
the error performances of C‘!) and Cg ) (or C¥ and C(; )), and Table 4 compares those of C(V)
and the zero-tail 4-state Ungerboeck’s TCM code of length 9 given in Example 5.2. Table 5
compares those of 16-PSK codes, Pt * y(RMs 3, Psg) * Vi, and Pj; * RMs 3 * P33 * V3, both of
which have rate 5/4, minimum squared Euclidean distance 4 and trellis diagrams of states 28.

Figure 5 compares the error performances of the 16-QASK code given in Example 6.2
with that of an uncoded 8-AMPM. The error performance of this 16-QASK code is measured

by two bit-error probabilities, p, and p., as follows:

21— (1-Pu(0) ", (6.21)
Pes 21— (1= P, (0), (6.22)

where P;.(0) is the value of the right-hand side of (6.18) and P..,(0) denotes simulation
result on P.(0). The error performance of the uncoded 8-AMPM is given by the bit-error
probability, p. , (simulation result).

7. Conclusion

In this paper, we have investigated the powerful multi-level technique for constructing band-
width efficient block modulation codes. A general formulation for a multi-level block mod-
ulation code in terms of its component codes over substrings of labeling symbols has been
presented. Lower bounds on the minimum distance of multi-level block modulation codes
have been derived. Several specific methods for constructing component codes of a multi-
level block modulation codes have been proposed. These methods provide interdependency

between consecutive labelings of component codes. As a result, there is an inter-relationship
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among the component codes of a multi-level block modulation code. This is a contrast to the
construction of a basic multi-level block modulation code in which there is no interdependency
among the component codes. A multi-level block modulation code with proper interdepen-
dency among its component codes has better error performance than its corresponding basic
multi-level code.

We have also studied the linear structure of multi-level block modulation codes. Detail
weight distribution of a linear multi-level modulation code and its enumeration have been
discussed. Finally, error performance of block modulation codes has been analyzed for an
AWGN channel based on a soft-decision maximum likelihood decoding. Error probabilities of
some multi-level block modulation codes have been evaluated based on their Euclidean weight

distributions and simulation results.
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Appendix A

o Lemma 1:

Let v = (vy,v3,...,v,) and V' = (v}, v},...,v.) be two different codewords in C. Then we

can express Vv and ¥’ as the following forms:

v = ‘—,(1)*‘—,(2)*._,,“—,(m)

v = {,’(1)*‘7’(2)*,..*‘7("'),

where ¥(*) and ¥'®) are codewords in C; and

v = (vy, v24, - - - 5 Uni), vy € l_'/(i),

vO = (o, . 0h), v € L9

Uj = U102 Ujm,

Yy = Ut Yy

with 1 <i<mand 1 <j < n. Lethdenote the first suffix such that
¥R £ A

Since v;; = v/; for 1 <i < hand 1 <j < n, it follows from (3.6) that
92, %5) = 92(0y1032 7 Vymy V52 - m) 2 G2 (Vs Vi)
From (2.22) and (2.23) we have that
9u(%,¥) 2 g (v#, ¥™) > Dlgi”,Cu]

For g; = d;, consider the case where ¥*) = ¥*) for i # h. It follows from (2.18), (2.19) and
(3.6) that d (¥, ¥) = dP(¥®, ¥®). Hence D[&", C)] > D[d,,C).
' AA



(1) It follows from (2.3) and (2.11) that for a; ---a,;-18,a,41---a, and a; -+ - 6,-13}@} 4, -+ - a4
in L
dL(al e a’_laja’-+l <o Qg, Gy a]_la;a;+l s a;)
= dbi+-- b tbitbar bbb 8+ b))
= d(b1+bj+]+"'+b[,b;+b;+l +"'+b;), (A-l)

where b, = Ax(as) for 1 < h < £ and b, = Ay(a}) for j < h < £. Equation (3.12) follows
from (2.10), (3.6) and (A.1), and equation (3.13) follows from (3.6) and (A.1).

(2) Let ¥ be a codewords in C; for 1 < j < m and ¥ be a codeword in C; different from
¥, Then it follows from (2.22), (3.12), (3.13) and (A.1) that

(T w900 4 g0 4 4D L gl
TV gD 4 D D) Ly gl
= d(¥H), v19). (A.2)
Equations (2.23) and (A.2) imply that D[d\’,C;] > D[C] for 1 < i < m. Then (3.14)

follows from Lemma 1. Similarly, (3.15) is shown.

(3) Since |B;| = |Li| = 2, it follows from (2.12) and (3.12) that for a # a’ in L;,
d&(a,a’) = d.. (A.3)

From (2.22), (2.23) and (A.3),
D[, C)) = 6:d;. (A.4)
Equations (3.14) and (A.4) imply (3.16).
AA



Appendix B

of of Lemma 3

For n/2-ruple ©# = (vy, v2, -, vny2), let f'(¥) be defined by
ka1 —kzz
@M= Y (b, vy, (B.1)

=1

Then, for n/2-tuples ¥ and ¥, f(vo¥') = f/(¥')of’(v). Let v be a codeword of C3. If and
only if ¥ € Cy,, that is, ¥ is orthogonal to every codeword of C3 — C3;, then

F@)=o. (B.2)

Let C! denote the linear subcode of C;) generated by {i;, : 1 < j < ka — kp}. Then it

follows from (B.2) that f’is a one-to-one mapping from C}; onto CY;.

Proof of (1)

For a nonzero codeword w in v(Cy, C;) (= F(Cy, f,Cs2)), W can be expressed as

W
w,=(0;®d)*xv, fori=1and?2

where ! € C!,, ¥; € Cyy, §; 2 f(¥,) € C", and &, 2 f/(¥,) € C,. Since C; N CY, = {0},
L ou =0if andonly if i; = @' = 0. f i; ® @’ # 0, then |i; & G/|x > 6,/2, and if ¥, # 0,
then |¥;[g > 82/2. There are three cases to be considered.

(1) Suppose that @; & i} # 0 for i = 1 and 2. Then,

|Wlg > |01 @ U)|gdy + |0, ® 03| gd) > 61d;.

(2) Suppose that &, ® @} = 0 and @; ® @} # 0. Then @; = @} =0, and |a; © Wj|lx > 6:/2.
Since @} = 0, @} € Cy;. If @t; = 0, then |d}|g > 6 and |W|g > 6;d;. If T, # 0, it follows
from (B.1) that ¥; # 0 and therefore |%;|y > 6,/2. Hence [Wly > 8,d2/2 + 6,d,/2.

(3) Suppose that @) @@} = i; @0, =0. Then &y =0} =G, =@ =0. If ¥, # 0 and
¥3 # 0, then |W|g > (|v1]g + [Vala)ds 2 62dy. If 93 = 0, then ¥, # 0. It follows from
(B.2) that #, € Cy; and |94|g > &;. Hence |W|q > 8;d,. Thus inequality (5.32) holds.
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Let ¥; be a codeword of Hamming weight 6, in Cy;. Then f(¥,00) = 000 and |f(¥,00) *
(‘7106”1 = I\—Illydg = 62dq
AA

The proof above implies (2) of the lemma.

Proof of (3)

For a linear block code C of length n with respect to & and a positive integer t such that
1<t < n,let Cs (or C,) denote the set of those codewords of C whose first t (or last n — ¢)
components are all-zero. Let C and C' denote C; * C; and ¥(C),C;) respectively, where
Ci = u(Cy, Ci3). We show that

Gyl 2 1G4, (B.3)

ICHl > 1Cyl- (B.4)
Then the claim is proved [15, Appendix]. From the symmetry shown by (5.26), it is sufficient
to consider ¢ such that 1 <t < n/f2.

Let a codeword W in C be expressed as
W = (W110(W1 & Wi3)) * (W310(W3 © Wa2)) (B.5)

where w,; € C,; for ¢ and j in {1,2}.

(1) Suppose that Wy; @ Wy, = Wy @ Wy = 0. Then Wy; € Cj; and Wy € Cp. Since
w1100 € Cyy, W3100 € Cy; and f(Wy00) = 000, W is also in C’. That is, inequality
(B.3) holds.

(2) Suppose that w € C;. Then W;; can be expressed as

wy=u et (B.6)

=/

where @' € C, and 0" € C};. Since f’ is a one-to-one mapping from C3, onto Cy), there

is ¥ in Cj; such that @” = f’(v). From (B.2),
f'(v@wg) = fi(v)=0a". (B.7)
Since @'o(d' ® Wy3) € Cy; and W4,0(V @ Wy,) € Cy, it follows from (B.6) and (B.7) that
(Wpo(G'® Wy @ f (Wzl))) * (W,0(V @ Wy,)), denoted W, is in C). Since different W’
results from different W, inequality (B.4) holds.
AA
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Appendix C

A Trellis Diagram for the Second Code Given in Table 1

For 1 < j < 8, the j-th input symbol is a,b, where g, is the least significant bit. Let (4,, B;)
be the state of the overall encoder after the j-th symbol, a;b,, is received. Assume that the
initial state is (Ao, By) = (0,0). The state transition from (4,-1, B;-1) to (A,, B,) when j-th
symbol a,b; is received is defined as follows:
(1) Ay =ay, By =4
(2) For 2 < j < 4,if a; = A, then A; = A,_, and B, = B,_, ®b;, and otherwise, the
state transition is not defined.
(3) For 5 < j < 8,ifa; = B,_;, then A; = A;_; ®b, and B, = B,_, and otherwise, the state
transition is not defined.
An input sequence is accepted as a code sequence if and only if every state transition is defined



Appendix D

Proof of Lemma 4:

(D) Suppose that for an n-tuple @ over S, C[i) = C. Since 0 € C, —2 € C. Therefore, for
any nonnegative integer h, —hua € C. Since C is finite, there is a positive integer h such
that —hit = 0, i.e., @ = —(h — 1)d € C. Hence i € C,.

(1) Let ¥; and ¥; be codewords in Cy. Then, for any codeword 1, there is a codeword @'
such that i — ¥, = @' and @' — ¥; € C. Hence 4 — (¥; + ¥;) = @' — ¥; € C. That is,
C[¥, + ¥3] = C and from (D), ¥, + ¥; € Co.

(2) Only if part: For any codeword @' in C, there is a codeword ¥ in C such that i —-d=
¥ — ¥. Hence @ — (i — ¥) € C. That is, C[d — ¥] = C and from (D), @ — v € Co.

If part: If @ —¥ € Cy, then for any @’ in C, there is a codeword ¥ such that i'—-(a-v) =
¥ie., o' — 1=V — v. That is, C[d] C C[¥]. Since |C[8]} = |C[¥]}, C[1] = C[¥].

(3) If part : For any @ in C, there exist ¥ in C and @' in C] such that @ = v+ Letv
be a codeword in Cj. Then we have that

a-v=v -v+i. (D.1)

Since C} is finite and closed under the component wise + addition, —¥ € C; and therefore,
¥ — ¥ € C}. 1t follows from (6.4) and (D.1) that @ — ¥ € C. That is, C[¢] = C and
therefore, v € Cy.
Only if part: For any ¥ in C},, ~V is alsoin Cy. Then for any @ in C,4—(~V) = u+V € C.
Then C can be taken as Cj.

AA



Table 1:

Some Comparisons of ¥(C;, C;) with C; = C;

Definition The number of
of n | log;|C| | D[C}/ds states of Nyc(D[C))
C a trellis diagram
Pl = P 8 8 2 4 (8 section) 28
(P, Py) 8 8 2 4 (8 section) 12
RM¢y * Pyg 16 20 2 16 (4 section) 120
Y(RM,,, Pig) 16 20 2 16 (4 section) 56
RM; 3+ Py 32 47 2 128 (4 section) 496
v(RMs 3, Ps3) 32 47 2 128 (4 section) 240
RMs = RMs3 |32 32 4 256 (4 section) 1240
Y(RMs,, RMs3) | 32 32 4 256 (4 section) 280




Table 2:

Comparison of the Error Performances between the Codes,

C$’ and C), Given in Example 5.1

SNR per P c™
information | Simulation | Upper bound | Simulation | Upper bound
bit (dB) result P, P;. result P, P,
6.0| 4.17E-03 5.09E-03 3.60E-03 4.52E-03
8.0 | 3.27E-05 3.50E-05 2.60E-05 2.74E-05
10.0 1.66E-08 1.07E-08




Table 3:

Comparison of the Error Performances between the Codes,

C? and C®, Given in Example 5.1

SNR per iy c
information | Simulation | Upper bound | Simulation | Upper bound
bit (dB) | result P, P result P, P;
6.08 | 8.05E-03 1.33E-02 7.38E-03 1.26E-02
8.08 | 2.94E-05 3.03E-05 2.41E-05 2.53E-05
10.08 3.68E-09 2.43E-09




Table 4:

Comparison of the Error Performances between C(!) and

the Zero-tail 4-state Ungerboeck’s 8-PSK TCM Code of Length 9

The zero-tail 4-state

SNR per c Ungerboeck’s code
information | Simulation | Upper bound | Simulation | Upper bound
bit (dB) | result P, P; result P, P;
8.0 | 2.60E-05 2.74F-05 1.76 E-05 1.80E-05
10.0 1.07E-08 1.45E-08
12.0 5.88E-14 3.07E-13




Table 5:

Comparison of the Error Performances between 16-PSK Codes
Pg; * RMs; » Py x Vy and Py; « y(RMs 3, Ps3) * Vay

SNR per P« RMs ;= Py » Vy Pg * y(RMs 3, P33) * Vi,
information | Simulation | Upper bound | Simulation | Upper bound
bit (dB) | result P, P, result P ,(0) P, (0)
7.02 | 2.64E-03 4.67E-03 2.24E-03 4.33E-03
8.02 8.15E-05 6.43E-05
9.02 6.93E-07 4.95E-07
10.02 2.22E-09 1.45E-09
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Fig. 2 Error performance of the 4-state 8-PSK code C!) given in Example 5.1
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Fig. 3 Error performance of the 16-state 8-PSK code C? given in Example 5.1
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Fig. 4 Error performance of the basic 4-level 256-state 16-PSK code P = RMy 3 » Pi3 » V3,
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Fig. 5 Error performances of the 16-QASK code given in Example 6.2 and the uncoded
8-AMPM



